Carbon cycling in Anabaena sp. PCC 7120. Sucrose synthesis in the heterocysts and possible role in nitrogen fixation.
نویسندگان
چکیده
Nitrogen (N) available to plants mostly originates from N(2) fixation carried out by prokaryotes. Certain cyanobacterial species contribute to this energetically expensive process related to carbon (C) metabolism. Several filamentous strains differentiate heterocysts, specialized N(2)-fixing cells. To understand how C and N metabolism are regulated in photodiazotrophically grown organisms, we investigated the role of sucrose (Suc) biosynthesis in N(2) fixation in Anabaena sp. PCC 7120 (also known as Nostoc sp. PCC 7120). The presence of two Suc-phosphate synthases (SPS), SPS-A and SPS-B, directly involved in Suc synthesis with different glucosyl donor specificity, seems to be important in the N(2)-fixing filament. Measurement of enzyme activity and polypeptide levels plus reverse transcription-polymerase chain reaction experiments showed that total SPS expression is greater in cells grown in N(2) versus combined N conditions. Only SPS-B, however, was seen to be active in the heterocyst, as confirmed by analysis of green fluorescent protein reporters. SPS-B gene expression is likely controlled at the transcriptional initiation level, probably in relation to a global N regulator. Metabolic control analysis indicated that the metabolism of glycogen and Suc is likely interconnected in N(2)-fixing filaments. These findings suggest that N(2) fixation may be spatially compatible with Suc synthesis and support the role of the disaccharide as an intermediate in the reduced C flux in heterocyst-forming cyanobacteria.
منابع مشابه
An increase in the level of 2-oxoglutarate promotes heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120.
In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, a starvation of combined nitrogen induces differentiation of heterocysts, cells specialized in nitrogen fixation. How do filaments perceive the limitation of the source of combined nitrogen, and what determines the proportion of heterocysts? In cyanobacteria, 2-oxoglutarate provides a carbon skeleton for the incorporation of inorga...
متن کاملA Comprehensively Curated Genome-Scale Two-Cell Model for the Heterocystous Cyanobacterium Anabaena sp. PCC 7120.
Anabaena sp. PCC 7120 is a nitrogen-fixing filamentous cyanobacterium. Under nitrogen-limiting conditions, a fraction of the vegetative cells in each filament terminally differentiate to nongrowing heterocysts. Heterocysts are metabolically and structurally specialized to enable O2-sensitive nitrogen fixation. The functionality of the filament, as an association of vegetative cells and heterocy...
متن کاملA Comprehensively Curated Genome-Scale Two-Cell Model for the Heterocystous Cyanobacterium Anabaena sp. PCC 71201[CC-BY]
Anabaena sp. PCC 7120 is a nitrogen-fixing filamentous cyanobacterium. Under nitrogen-limiting conditions, a fraction of the vegetative cells in each filament terminally differentiate to nongrowing heterocysts. Heterocysts are metabolically and structurally specialized to enable O2-sensitive nitrogen fixation. The functionality of the filament, as an association of vegetative cells and heterocy...
متن کاملDevT (Alr4674), resembling a Ser/Thr protein phosphatase, is essential for heterocyst function in the cyanobacterium Anabaena sp. PCC 7120.
Heterocyst-forming cyanobacteria are able to perform oxygenic photosynthesis and nitrogen fixation simultaneously in the same filament, by restricting the highly O(2)-sensitive nitrogenase to specialized cells, the heterocysts. A remarkable change in morphology and metabolism accompanies the differentiation of heterocysts, which only occurs when no source of combined nitrogen is available. In t...
متن کاملDetermination of carbon-to-nitrogen ratio in the filamentous and heterocystous cyanobacterium Anabaena sp. PCC 7120 with single-cell soft X-ray imaging
Vegetative cells and heterocysts in the filamentous cyanobacterium Anabaena sp. PCC 7120 were observed by soft X-ray microscopy. Carbon-to-nitrogen (C/N) ratio of each cell was estimated by the difference of the absorbance of the images below and above the nitrogen K-edge absorption. It was revealed that the C/N ratios in vegetative cells and heterocysts are 4.54 and 2.46, respectively.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 143 3 شماره
صفحات -
تاریخ انتشار 2007